Favorite  |  Contact  |  Chinese  |  CAS
    Home         About us         Faculty         Achievements         News & Events     Communication & Cooperation     Contact us    
 
  Location :Home > Recent Publications

 

De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids   

  

Xiang Guo,Handong Su,Qinghua Shi,Shulan Fu,Jing Wang,Xiangqi Zhang,Zanmin Hu,Fangpu Han 

  

  

PLOS GENETICS  

DOI:10.1371/journal.pgen.1005997  

  

  

Abstract  

Centromeres typically contain tandem repeat sequences, but centromere function does not necessarily depend on these sequences. We identified functional centromeres with significant quantitative changes in the centromeric retrotransposons of wheat (CRW) contents in wheat aneuploids (Triticum aestivum) and the offspring of wheat wide hybrids. The CRW signals were strongly reduced or essentially lost in some wheat ditelosomic lines and in the addition lines from the wide hybrids. The total loss of the CRW sequences but the presence of CENH3 in these lines suggests that the centromeres were formed de novo. In wheat and its wide hybrids, which carry large complex genomes or no sequenced genome, we performed CENH3-ChIP-dot-blot methods alone or in combination with CENH3-ChIP-seq and identified the ectopic genomic sequences present at the new centromeres. In adcdition, the transcription of the identified DNA sequences was remarkably increased at the new centromere, suggesting that the transcription of the corresponding sequences may be associated with de novo centromere formation. Stable alien chromosomes with two and three regions containing CRW sequences induced by centromere breakage were observed in the wheat-Th. elongatum hybrid derivatives, but only one was a functional centromere. In wheat-rye (Secale cereale) hybrids, the rye centromere-specific sequences spread along the chromosome arms and may have caused centromere expansion. Frequent and significant quantitative alterations in the centromere sequence via chromosomal rearrangement have been systematically described in wheat wide hybridizations, which may affect the retention or loss of the alien chromosomes in the hybrids. Thus, the centromere behavior in wide crosses likely has an important impact on the generation of biodiversity, which ultimately has implications for speciation.
[ Top ]  
 
Copyright © State Key Laboratory of Plant Cell and Chromosome Engineering
Address: No.1, West Beichen Road, Chaoyang District, Beijing, China Tel: 010-64806537 Fax: 010-64806537